PDZ adaptor protein PDZK2 stimulates transport activity of organic cation/carnitine transporter OCTN2 by modulating cell surface expression.
نویسندگان
چکیده
A part of the organic cation transporter families (OCT3, OCTN1, and OCTN2) has recently been identified to physically interact with PDZ (PSD95, Dlg, and ZO1) domain-containing proteins, although the physiological relevance of such interaction has not yet been fully examined. Here we have examined the stimulatory effect of PDZK2 [also named NaPi-Cap2 and intestinal and kidney-enriched PDZ protein (IKEPP)] on those cation transporters. In HEK293 cells, coexpression with PDZK2 increased the uptake of carnitine by OCTN2 with minimal effect on its substrate recognition specificity, but not for transport activity of OCT3 or OCTN1. The stimulatory effect of PDZK2 on OCTN2 was compatible with an approximately 2 times increase in transport capacity and can be accounted for by the increase in cell surface expression of OCTN2. Coexpression of PDZK2 did not affect carnitine transport activity of OCTN2 with deletion of the last four amino acids, which were found to be important for the interaction, suggesting involvement of physical interaction of the two proteins in the increase of cell surface expression of OCTN2. In mouse kidney, colocalization of PDZK2 and OCTN2 occurred predominantly in the region that was close to, but not the same as, the surface of apical membranes where OCTN2 alone was observed, suggesting the existence of OCTN2 in the subapical compartment that interacts with PDZK2. The present data have thus proposed an "intracellular pool" for OCTN2 that may be relevant to the stabilization of cell surface expression of OCTN2, thereby increasing transport activity for carnitine.
منابع مشابه
PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice.
Gastrointestinal (GI) absorption of certain therapeutic agents is thought to be mediated by solute carrier (SLC) transporters, although minimal in vivo evidence has been reported. Here, we show key roles of postsynaptic density 95/disk-large/ZO-1 (PDZ) domain-containing protein, PDZK1, as a regulatory mechanism of two solute carriers, Slc15a1 (oligopeptide transporter PEPT1) and Slc22a5 (carnit...
متن کاملPDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2.
Urinary excretion of cationic xenobiotics is believed to be mediated by organic cation transporter (OCT and OCTN) families expressed on both basolateral and brush-border membranes of renal tubules, although the molecular mechanisms for targeting of these transporters to each membrane are poorly understood. Here, to examine the regulatory mechanisms for cell-surface expression and function of th...
متن کاملCaveolin-1 - A Novel Interacting Partner of Organic Cation/Carnitine Transporter (Octn2): Effect of Protein Kinase C on This Interaction in Rat Astrocytes
OCTN2--the Organic Cation Transporter Novel family member 2 (SLC22A5) is known to be a xenobiotic/drug transporter. It transports as well carnitine--a compound necessary for oxidation of fatty acids and mutations of its gene cause primary carnitine deficiency. Octn2 regulation by protein kinase C (PKC) was studied in rat astrocytes--cells in which β-oxidation takes place in the brain. Activatio...
متن کاملFunctional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition.
The organic cation/carnitine transporter OCTN2 transports carnitine in a sodium-dependent manner, whereas it transports organic cations sodium-independently. To elucidate the functional domain in OCTN2, we constructed chimeric proteins of human OCTN2 (hOCTN2) and mouse OCTN3 (mOCTN3) and introduced mutations at several amino acids conserved among human, rat and mouse OCTN2. We found that transm...
متن کاملFunctional expression of organic cation/carnitine transporter 2 (OCTN2/SLC22A5) in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model.
The aim of this study was to examine whether organic cation/carnitine transporter 2 (OCTN2/SLC22A5) plays a role in the human blood-brain barrier (BBB) by evaluating its functional activity in human brain endothelial cells (hCMEC/D3), which are considered to be a model of the BBB. The uptake of [(3)H]L-carnitine by hCMEC/D3 cells was time-, extracellular sodium- and concentration-dependent, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 11 شماره
صفحات -
تاریخ انتشار 2006